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Abstract

Purpose: The Spline Reconstruction Technique (SRT), based on the analytic formula for the

inverse Radon transform, has been presented earlier in the literature. In this study, we present an

improved formulation and numerical implementation of this algorithm and evaluate it in comparison

to FBP.

Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram

via an approximation in terms of ‘custom made’ cubic splines. By restricting reconstruction only

within object pixels and by utilizing certain mathematical symmetries, we achieve a reconstruction

time comparable to that of FBP. We have implemented SRT in STIR and have evaluated this

technique using simulated data from a clinical PET system, as well as real data obtained from

clinical and preclinical PET scanners. For the simulation studies, we have simulated sinograms of

a point-source and three digital phantoms. Using these sinograms, we have created realizations of

Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images,

we have determined contrast and bias for different regions of the phantoms as a function of noise

level. For the real-data studies, sinograms of an 18F-FDG injected mouse, a NEMA NU 4-2008

image quality phantom, and a Derenzo phantom have been acquired from a commercial PET

system. We have determined: a) coefficient of variations (COV) and contrast from the NEMA

phantom, b) contrast for the various sections of the Derenzo phantom, and c) line profiles for the

Derenzo phantom. Furthermore, we have acquired sinograms from a whole-body PET scan of an

18F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP

reconstructions of the thorax have been visually evaluated.

Results: Our results indicate an improvement in FWHM and FWTM in both simulated and

real point-source studies. In all simulated phantoms, the SRT exhibits higher contrast and lower

bias than FBP at all noise levels, by increasing the COV in the reconstructed images. Finally, in

real studies, whereas the contrast of the cold chambers are similar for both algorithms, the SRT

reconstructed images of the NEMA phantom exhibit slightly higher COV values than those of FBP.

In the Derenzo phantom, SRT resolves the 2-mm separated holes slightly better that FBP. The

small-animal and human reconstructions via SRT exhibit slightly higher resolution and contrast

than the FBP reconstructions.

Conclusions: The SRT provides images of higher resolution, higher contrast and lower bias than

FBP, by increasing slightly the noise in the reconstructed images. Furthermore, it eliminates streak
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artifacts outside the object boundary. Unlike other analytic algorithms, the reconstruction time of

SRT is comparable with that of FBP. The source code for SRT will become available in a future

release of STIR.

Keywords: Image reconstruction-analytical methods, Spline reconstruction, SRT, PET, FBP
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I. INTRODUCTION

Positron emission tomography (PET) imaging is an important, noninvasive, nuclear

medicine modality that measures the in vivo distribution of imaging agents labeled with

positron-emitting radionuclides1. The importance of PET in detecting, staging and moni-

toring the progress of several diseases has been established in a plethora of rigorous clinical5

studies2. In oncologic imaging, PET/CT with 18F-FDG plays a crucial role for staging,

restaging, and treatment monitoring for cancer patients3–5. Furthermore, small-animal PET

is becoming an essential imaging modality for preclinical research1,6,7, as well as for drug

development and discovery8. It allows each animal to serve as its own control through a

series of longitudinal studies, thus eliminating the intersubject variability and also reducing10

the number of animals required for an experiment.

Image reconstruction is an essential component in tomographic medical imaging, includ-

ing PET, SPECT (Single-Photon Emission Computed Tomography) and CT (Computed

Tomography), allowing a tomographic image to be obtained from a set of two-dimensional

projections. In contrast to CT and SPECT which involve the acquisition of projection im-15

ages, in PET the relevant raw data consist of a list of ‘coincidence events’ which are created

along certain ‘lines-of-responses’ (LORs). However, coincidence events can be grouped into

sinograms. The existing image reconstruction methods can be classified into two main cat-

egories: (a) analytic methods and (b) iterative (or algebraic) methods. There exist several

references on these methods either in books9–11 or journal articles12,13.20

Filtered backprojection (FBP) is the predominant analytic reconstruction method; math-

ematically it is based on the inversion of the Radon transform14–16 through the central slice

theorem17. The main advantages of FBP are speed and simplicity. FBP assumes a simple

Radon model where the data consist of line integrals along the radioactivity distribution,

ignoring the randomness of the gamma-ray counting process. However, in FBP it is difficult25

to incorporate complex physical phenomena such as attenuation and scatter. Noise issues

are treated by selecting appropriate filtering parameters, such as the roll-off and cutoff fre-

quencies of the reconstruction filter (usually at the expense of spatial resolution). Another

disadvantage of FBP is the streak artifacts that are particular prominent near hot regions

of the object.30

The predominant iterative algorithms are the Maximum Likelihood Expectation Maxi-
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mization (MLEM) algorithm18 and its accelerated successor the Ordered Subsets Expecta-

tion Maximization (OSEM) algorithm19. The main advantage of the iterative algorithms is

the ability to model several aspects of the imaging system, including elements of the noise

characteristics, sinogram blurring due to detector crystal penetration, depth of interaction,35

photon scatter and attenuation in the body20,21. As a consequence, iterative methods can

improve image quality and achieve considerable resolution recovery. However, iterative al-

gorithms require more computing time and power, particularly when details of the physical

model are included.

Iterative techniques are now in widespread use in clinical and preclinical systems. This is40

due to the recent computer hardware improvements (processing and storage) and the speed

improvement provide by OSEM. Most commercial clinical and preclinical PET systems allow

the use of either FBP or OSEM for image reconstruction. Currently, in OSEM the main

challenge is the selection of the proper number of subsets and iterations22, as well as the

choice of a suitable post-reconstruction filter (if needed). Stopping the algorithm at the45

proper number of iterations is important, since EM-based algorithms suffer from noise/bias

trade-off. Stopping the iteration process after convergence is reached results in a noisy

image, whereas stopping the process too soon results in a less noisy image, which however is

biased towards the image assumed at the initial step. In order to resolve this issue, several

regularisation schemes have been proposed23. In spite of these improvements, a recent50

dynamic brain PET study by Reilhac et al.24 concludes that analytical methods are more

robust to low count data than iterative methods. Furthermore, the positivity constraint

imposed to the sinogram and image space by the EM-based reconstruction algorithms, leads

to overestimation (positive bias) of the low activity regions24–26.

In a recent study by Conti et al.27 it was demonstrated that TOF FBP has improved55

performance over TOF OSEM. In particular, it was shown that the TOF gain in TOF FBP

can be used as a sensitivity amplifier, reducing the number of counts necessary to produce

an image of the same characteristics. On the other hand, it was observed that there were

some limitations in the TOF gain of TOF OSEM, especially at low count cases. TOF can be

applied to SRT in a manner similar to FBP. Specifically, TOF can be applied by confidence60

weighting each projection during backprojection for each TOF bin27.

In this study, we present an improved numerical implementation of an analytic, two-

dimensional, reconstruction technique called SRT (Spline Reconstruction Technique). Fur-
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thermore, we evaluate this new technique in comparison to FBP, using simulated data from

a clinical PET system, as well as real data obtained from clinical and preclinical PET scan-65

ners. For this evaluation we employ the Open Source software library called STIR (Software

for Tomographic Image Reconstruction)28.

The SRT algorithm is based on an analytic formula for the inverse Radon transform

presented earlier in the literature29,30. Here, we present an improved formulation of the

numerical implementation which corrects certain singularity issues of the earlier version.70

SRT involves the numerical evaluation of the Hilbert transform of the sinogram via an

approximation in terms of ‘custom made’ cubic splines. The use of splines for computing

the inverse Radon transform is not new; in particular see La Rivière and Pan31 and Horbelt

et al.32. Furthermore, by employing sinogram thresholding, we restrict reconstruction only

within object pixels, thus eliminating the streak artifacts outside the object and hence re-75

constructing a ‘cleaner’ image. In addition, by exploiting certain mathematical symmetries,

we are able to improve the reconstruction time to a level comparable with FBP.

II. MATERIALS AND METHODS

A. Spline Reconstruction Technique (SRT)80

Consider a line L specified by two real numbers ρ and θ, where −∞ < ρ < ∞ and

0 ≤ θ < 2π. For a given θ, a point on this line in Cartesian coordinates (x1, x2), can be

expressed in terms of the local coordinates (ρ, τ) by the equations

x1 = τ cos θ − ρ sin θ and x2 = τ sin θ + ρ cos θ, (1)

where τ is a parameter along L.

The line integral of a function f (x1, x2) along the line L is called its Radon transform,

and is denoted by f̂ 14,15:

f̂(ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2) δ(ρ− x2 cos θ +

x1 sin θ) dx1dx2, −∞ < ρ < ∞, 0 ≤ θ < 2π, (2)

where δ(·) the Dirac delta function. In the rotated coordinate system (ρ, τ), where

ρ = x2 cos θ − x1 sin θ and τ = x2 sin θ + x1 cos θ, (3)
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the Radon transform can be expressed as

f̂(ρ, θ) =

∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ) dτ,

−∞ < ρ < ∞, 0 ≤ θ < 2π. (4)

In medical applications the above integral has finite support.85

Associated with Eq. (4) there exists the following inverse problem: Given f̂(ρ, θ) for

all 0 ≤ θ < 2π and −∞ < ρ < ∞, determine the corresponding function f(x1, x2). The

relevant formula, called the Inverse Radon transform14,15, can be expressed in the following

form33:

f(x1, x2) =
1

2iπ

(
∂

∂x1

− i
∂

∂x2

)∫ 2π

0

eiθF (ρ, θ)

∣∣∣∣∣
ρ=x2 cos θ−x1 sin θ

dθ, (5)

where F (ρ, θ) denotes half the Hilbert transform of f̂(ρ, θ) with respect to ρ, i.e.

F (ρ, θ) ≡ 1

2π

∮ ∞

−∞

f̂(r, θ)

r − ρ
dr, −∞ < ρ < ∞, 0 ≤ θ < 2π (6)

and
∮
denotes the principal value integral.

Eq. (5) can be written in the form

f(x1, x2) = − 1

2π

∫ 2π

0

[
∂F (ρ, θ)

∂ρ

]
ρ=x2 cos θ−x1 sin θ

dθ, −∞ < x1, x2 < ∞. (7)

Indeed, inserting the operator
(

∂
∂x1

− i ∂
∂x2

)
inside the integral in the right hand side of Eq.

(5), we find(
∂

∂x1

− i
∂

∂x2

)
F (x2 cos θ − x1 sin θ, θ) = − (sin θ + i cos θ)

∂F (ρ, θ)

∂ρ
, (8)

where ρ is defined in Eq. (3). Using Eq. (8), Eq. (5) becomes Eq. (7).

For the numerical calculation of the Hilbert transform of f̂(ρ, θ) we assume that f̂(ρ, θ)

has support in the interval −1 ≤ ρ ≤ 1 with f̂(−1, θ) = f̂(1, θ) = 0, and that f̂(ρ, θ) is given

for every θ at the n points {ρi}n1 . We denote the value of f̂ at ρi by f̂i, i.e.

f̂i = f̂(ρi, θ), ρi ∈ [−1, 1], 0 ≤ θ < 2π, i = 1, . . . , n. (9)

In the interval ρi ≤ ρ ≤ ρi+1, we approximate f̂(ρ, θ) by cubic splines:

f̂(ρ, θ) = ai(θ) + bi(θ)ρ+ ci(θ)ρ
2 + di(θ)ρ

3, ρi ≤ ρ ≤ ρi+1, 0 ≤ θ < 2π, (10)

i = 1, . . . , n,
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with {ai(θ), bi(θ), ci(θ), di(θ)}n1 given by the following expressions:

ai(θ) =
ρi+1f̂i − ρif̂i+1

∆i

+
f̂ ′′
i

6

(
−ρi+1∆i +

ρ3i+1

∆i

)
+

f̂ ′′
i+1

6

(
ρi∆i −

ρ3i
∆i

)
, (11a)

bi(θ) =
f̂i+1 − f̂i

∆i

− f̂ ′′
i

6

(
−∆i +

3ρ2i+1

∆i

)
+

f̂ ′′
i+1

6

(
−∆i +

3ρ2i
∆i

)
, (11b)

ci(θ) =
1

2∆i

(ρi+1f̂
′′
i − ρif̂

′′
i+1), (11c)

di(θ) =
f̂ ′′
i+1 − f̂ ′′

i

6∆i

, (11d)

where,

∆i = ρi+1 − ρi (12)

and f̂ ′′
i denotes the second derivative of f̂(ρ, θ) with respect to ρ evaluated at ρi, i.e.

f̂ ′′
i =

∂2f̂(ρ, θ)

∂ρ2

∣∣∣∣∣
ρ=ρi

, i = 1, . . . , n. (13)

We next show that the function ∂F/∂ρ, where F is defined in Eq. (6), can be approxi-90

mated as follows:

∂F (ρ, θ)

∂ρ
=

1

2π

{
C(θ) +

1

2
(f̂ ′′

n − f̂ ′′
1 )ρ+Dn−1(ρ, θ) ln |ρ− ρn| −D1(ρ, θ) ln |ρ− ρ1|+

n−2∑
i=1

[Di(ρ, θ)−Di+1(ρ, θ)] ln |ρ− ρi+1|

}
, −1 ≤ ρ ≤ 1, 0 ≤ θ < 2π, (14)

where C(θ) and {Di(ρ, θ)}n−1
1 are defined by the equations

C(θ) =
n−1∑
i=1

[2ci(θ)∆i +
3

2
di(θ)(ρ

2
i+1 − ρ2i )], (15a)

Di(ρ, θ) = bi(θ) + 2ci(θ)ρ+ 3di(θ)ρ
2, ρi ≤ ρ ≤ ρi+1, i = 1, . . . , n. (15b)

The functions {bi(θ), ci(θ), di(θ)}n1 appearing in Eq. (15a) and Eq. (15b) are defined by Eqs.

(11b)-(11d) via {f̂i and f̂ ′′
i }n1 ; the functions {f̂ ′′

i (θ)}n1 can be computed in terms of f̂i(θ) by

solving the following n linear equations:95

Di(ρi+1, θ) = Di+1(ρi+1, θ), i = 1, . . . , n− 2, 0 ≤ θ < 2π, (16a)

D1(ρ1, θ) = Dn−1(ρn, θ) = 0. (16b)

Before deriving Eq. (14)-(16b), we note that the points {ρi+1}n−1
i=1 are removable logarithmic

singularities. This is a direct consequence of Eqs. (16a).
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In order to derive Eq. (14) we first note that for the arbitrary function f̂(r, θ) the following

expression holds:

∂

∂ρ

∮ ρi+1

ρi

f̂(r, θ)

r − ρ
dr =

f̂i+1

ρ− ρi+1

− f̂i
ρ− ρi

+

∮ ρi+1

ρi

∂f̂(r,θ)
∂r

r − ρ
dr, −1 ≤ ρ ≤ 1. (17)

Hence,

∂

∂ρ

∮ 1

−1

f̂(r, θ)

r − ρ
dr =

n−1∑
i=1

∮ ρi+1

ρi

∂f̂(r,θ)
∂r

r − ρ
dr. (18)

Then, employing the identities∮ ρi+1

ρi

dr

r − ρ
= Ii(ρ), (19a)∮ ρi+1

ρi

rdr

r − ρ
= ∆i + ρIi(ρ), (19b)∮ ρi+1

ρi

r2dr

r − ρ
=

1

2
(ρ2i+1 − ρ2i ) + ρ∆i + ρ2Ii(ρ), (19c)

where

Ii(ρ) = ln

∣∣∣∣ρi+1 − ρ

ρi − ρ

∣∣∣∣ , (20)

Eq. (18) becomes

∂

∂ρ

∮ 1

−1

f̂(r, θ)

r − ρ
dr =

n−1∑
i=1

[2ci∆i+
3

2
di(ρ

2
i+1 − ρ2i )] + 3

(
n−1∑
i=1

di∆i

)
ρ+

n−1∑
i=1

Di(ρ) ln

∣∣∣∣ρi+1 − ρ

ρi − ρ

∣∣∣∣ . (21)

Evaluating f̂ as well as the second derivative of f̂ with respect to ρ at ρ = ρi and ρ = ρi+1 we

obtain four equations relating {ai, bi, ci, di} with
{
f̂i, f̂i+1, f̂

′′
i , f̂

′′
i+1

}
. These equations imply

equations (14). Then, the first two sums in the right-hand-side (RHS) of Eq. (21) yield the

first two terms in the RHS of Eq. (14). Similarly, the third sum in the RHS of Eq. (14)

yields the following terms:

Dn−1(ρ, θ) ln |ρ− ρn| −D1(ρ, θ) ln |ρ− ρ1|+
n−2∑
i=1

[Di(ρ, θ)−Di+1(ρ, θ)] ln |ρ− ρi+1| . (22)

and hence we obtain Eq. (14). Eqs. (16b) imply that there do not exist logarithmic100

singularities at the ρ = ρn = ρ1.
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Therefore, the Inverse Radon transform of a function f̂(ρ, θ), using the splines defined

by Eqs. (11a)-(11d), Eq. (12) and Eqs. (15a)-(15b) can be written in the form

f(x1, x2) = − 1

4π2

∫ 2π

0

{
C(θ) +

1

2
(f̂ ′′

n − f̂ ′′
1 )ρ+Dn−1(ρ, θ) ln |ρ− ρn| −D1(ρ, θ) ln |ρ− ρ1|+

n−2∑
i=1

[Di(ρ, θ)−Di+1(ρ, θ)] ln |ρ− ρi+1|

}
dθ, (23)

where C(θ) and Di(ρ, θ) are given by Eq. (15a) and Eq. (15b).

We note that in the construction of the so-called ‘natural’ splines, one requires continuity105

of the first derivative (the set of equations in (16a)), as well as the conditions f̂ ′′
1 = f̂ ′′

n = 0.

The former requirement implies that there cannot be logarithmic singularities at the interior

points ρ = ρi, i = 2, . . . , n−1. In order to eliminate the logarithmic singularities at the end

points ρ1 = −1 and ρn = 1, we impose the set of equations in (16b) (instead of f̂ ′′
1 = f̂ ′′

n = 0).

In this way we construct a set of splines ‘custom made’ for the evaluation of the Hilbert110

transform.

For a discrete number N of projection angles θ, Eq. (7) yields

f(x1, x2) ∼ − 1

4π2N

{
N−1∑
j=0

G(x1, x2,
2πj

N
) +

1

2
G(x1, x2, 0) +

1

2
G(x1, x2, 2π)

}
, (24)

where G(x1, x2, θ) denotes the evaluation of the RHS of Eq. (14) at ρ = x2 cos θ − x1 sin θ.

We evaluate numerically the RHS of Eq. (24) using the following steps: (i) Given ρi and

f̂(ρi,
2πj
N
) we compute f̂ ′′(ρi,

2πj
N
) by solving Eqs. (16a) and (16b). (ii) We compute C(2πj

N
)

using Eq. (15a). (iii) For a given (x1, x2), we compute ρ using Eq. (3) with θ = 2πj
N

and115

then compute f(x1, x2) via the RHS of Eq. (24).

We have implemented the above algorithm in STIR28, which is an object-oriented library

using C++. For this purpose we have employed STIR’s built-in classes Sinogram and Voxel-

sOnCartessianGrid. A new class, called STR2DReconstruction, has been created employing

STIR’s AnalyticReconstruction class in order to accommodate our algorithm.120

Symmetries

In order to increase the speed of the above algorithm, we have used the following fact: Let

{x1k1
}sxk1=1, {x2k2

}syk2=1, {ρi}
sp
i=1 be uniform partitions of [-1,1], and let {θj}sthj=1 be a uniform

partition of
[
0, π sth−1

sth

]
. The above partitions correspond to constant detector spacing, which

is the case for the Discovery ST PET system used in our implementation. Then, the eight125
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points

(x1k1
, x2k2

, θj, ρi+1), (x1k1
, x2sx−k2+1

, θsth−j+2, ρi+1),

(x1sx−k1+1
, x2k2

, θsth−j+2, ρsp−i), (x1sx−k1+1
, x2sy−k2+1

, θj, ρsp−i),

where either 2 ≤ j ≤
⌈
sth
2

⌉
,

(x1k2
, x2k1

, θsth/2−j+2, ρsp−i), (x1k2
, x2sx−k1+1

, θj−sth/2, ρsp−i)

(x1sx−k2+1
, x2k1

, θj−sth/2, ρi+1), (x1sx−k2+1
, x2sx−k1+1

, θsth/2−j+2, ρi+1),

or
⌈
sth
2

⌉
≤ j ≤ sth,

(x1k2
, x2k1

, θ3∗sth/2−j+2, ρi+1), (x1k2
, x2sx−k1+1

, θsth/2+j, ρi+1)

(x1sx−k2+1
, x2k1

, θsth/2+j, ρsp−i), (x1sx−k2+1
, x2sx−k1+1

, θ3∗sth/2−j+2, ρsp−i),

have the same ln |ρ− ρi+1| value. Thus, by executing the algorithm for k1 from 1 to
⌈
sx
2

⌉
and for k2 from 1 to k1, we only need to compute once the logarithm associated with the130

above eight points (the logarithms associated with j = 1 must be computed separately).

Restricting Reconstruction Within Object Boundary

Our algorithm constructs an image in a raster scan format, by scanning all pixel locations

(x1, x2) and then calculating the integral over θ of the derivative of the half Hilbert transform,

which is approximated by Eq. (14). The reconstruction time of this algorithm can be further135

reduced by employing object specific information that is ‘hidden’ in the sinogram. In this

respect we consider the important case that the boundary of the object is convex. In this

case, a pixel which is outside the boundary spanned by an object and hence has zero value,

can be singled out from the sinogram by first identifying the detector locations for all angles

θ that receive contribution from this pixel; then, for every (x1, x2), if there is even one θ140

such that f̂(ρ, θ) = 0, it follows that f(x1, x2) must be zero.

Using the above condition we can restrict the reconstruction process only to pixels within

the object boundary and exclude all zero pixels outside the object. In this way, in addition

to improving considerably the reconstruction time (depending on the size of the object), we

can also obtain a ‘clean’ reconstruction without any streak artifacts outside the object. For145

multiple objects, such as a transverse slice of the torso including the two arms, the above

approach will work for the zero pixels between the arms and the torso. This approach also
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works for most of the object bounded by a concave boundary; the complete analysis of this

case will be presented elsewhere.

For real data, the condition f̂(ρ, θ) = 0 must be replaced by f̂(ρ, θ) ≤ threshold, since150

in the presence of system noise, pixels outside the object’s boundary in the sinogram can

have values greater than zero. In our implementations, the threshold value was determined

manually by examining the sinogram values outside the object boundary. Various techniques

for automating the threshold selection, including the minimax thresholding technique, are

under investigation.155

To our knowledge, sinogram thresholding has not being applied to FBP. Thresholding is

not applied over the whole sinogram but it is only applied to the part of the sinogram that

corresponds to points which are outside the reconstructed image. Sinogram thresholding is

an optional feature of the SRT algorithm, which can be used to reduce reconstruction time,

as well as to ‘clean’ the image.160

B. The FBP algorithm

The FBP reconstruction algorithm is well known; in what follows, we briefly summarize

its mathematical formulation in order to underline similarities and differences with respect

to SRT. The inverse Radon transform implemented via the FBP algorithm is expressed by

the following formula34:

f(x1, x2) =
1

N

N−1∑
n=0

s∗(ρ, θn), (25)

where

s∗(ρ, θ) =
1

2π
F−1 [S(ξρ, θ) ∗H(ξρ)] , (26)

F and F−1 denote the direct and inverse Fourier transform, S(ξρ, θ) is the sinogram in the

spatial frequency domain given by the expression

S(ξρ, θ) = F{f̂(ρ, θ)} (27)

and the function H(ξρ) denotes some appropriate filter function. For our comparisons, H(ξρ)

is a ramp filter with a cutoff frequency equal to the Nyquist frequency.
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C. Simulation studies

In order to simulate the GE Discovery ST PET scanner, we have employed STIR. Briefly,165

the scanner consists of 24 detector rings whose diameter equals 88.62 cm. Each detector

ring has 70 detector blocks, with each block consisting of an array of 6×6 crystals, giving a

total of 420 crystals per ring. The generated sinograms have dimensions of 221 detectors ×

210 angles. More details on this scanner can be found elsewhere35.

In order to determine the spacial resolution of the system, a single pixel (3.195 mm)170

point-source has been simulated at the axial center of the FOV in two different locations: a)

at the position (0 cm, 0 cm), and b) at the position (10 cm, 10 cm). After reconstructions

using either SRT or FBP (without added Poisson noise), horizontal and vertical profiles were

drawn through the source, and a Gaussian fit was applied in order to determine tangential

and radial spatial resolution via FWHM and FWTM measurements. We note that no175

sinogram thresholding was applied to the SRT reconstructions. The FWHM and FWTM

were calculated from the standard deviation of the fitted Gaussian. We note that this

approach, employed by MacDonald et al.36 and also used by Park et al.37, is slightly different

than the standard approach of NEMA. However, comparisons between the two approaches

for determining point-source resolution has shown that the Gaussian approach is more robust180

with respect to pixel size variations37.

In order to evaluate the performance of the SRT algorithm in comparison with FBP, the

following 2D simulated phantoms have been used: (a) an image quality (IQ) phantom, (b)

a digitized version of the Jaszczak R⃝ phantom (Data Spectrum Corporation, USA), and (c)

a slice of the digital 3D Hoffman phantom38. For all phantoms, the image grid is of size of185

128×128 pixels.

The IQ phantom simulates the human torso; it has been used in order to establish how well

each algorithm can determine hot and cold lesions of variable size inside a warm background.

The IQ phantom consists of two circular cold regions (with diameters of 38 mm and 32 mm)

and four circular hot regions (with diameters of 25 mm, 19 mm, 15 mm, and 12 mm) inside190

a larger warm region that simulates the background. The radioactive concentration ratio

(RCR) between hot regions and the surrounding warm background is 4:1 for the three hot

regions.

The Jaszczak phantom has been used in order to investigate the ability of each algorithm
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to detect cold lesions of variable size inside a radioactive background. The phantom is195

separated into six sections. Each section has cold circles of different size (actually these

domains are rods of which a single cross-section has been analyzed) uniformly arranged to

form an equilateral triangle (with circle diameters of 27.11 mm, 18.03 mm, 15.76 mm, 13.50

mm, 11.22 mm, 9.14 mm) inside a hot region of diameter 30.67 cm. The distance between

rods of equal diameter is twice the diameter of the rods, center-to-center.200

Finally, the Hoffman phantom simulates a cerebral PET study. It contains a complicated

radioactivity distribution within small anatomical features, thus it allows the investigation

of the performance of each algorithm in a more realistic situation. The Hoffman phantom

contains three distinct radioactive regions: Gray Matter (GM), White Matter (WM), and

Cerebrovascular Fluid (CSF). The RCR between GM and WM is 5.08:1. The radioactivity205

concentration in the CSF region is zero.

After placing the three simulated phantoms in the center of the scanner, 2D projection

data have been generated in STIR using a ray tracing technique with 10 rays per detector.

Scatter and attenuation have not been modeled. These sinograms provide the noiseless

PET measurements. For each noiseless sinogram, 20 Poisson noise realizations have been210

generated at 5 different levels (NL1-NL5), where NL5 corresponds to the highest noise level

applied. The noiseless sinograms contain 15 million events, while the noisy sinograms from

NL1 to NL5 contain 75, 15, 10.5, 7.5 and 1.5 million events, respectively.

All reconstructions have been executed on a PC with Intel R⃝ CoreTMi7-920 Processor,

running on a Linux 64-bit environment. The reconstruction grid is 221×221 for the images215

generated by both reconstruction algorithms. No filtering or smoothing has been applied to

the SRT and FBP reconstructed images post reconstruction.

D. Real data studies

1. Imaging system and acquisition

For the preclinical data, all image acquisitions have been performed using a commercial220

ARGUS-CT small animal PET/CT system (SEDECAL S.A., Madrid, Spain). The PET

tomograph of this system is identical to the GE Healthcare eXplore VISTA Small-Animal

PET scanner which is described elsewhere39.
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All data have been acquired in a three-dimensional (3D) mode. The acquired sinograms

have been corrected for deadtime, radioactivity decay, normalization, randoms, scatter, and225

attenuation. The scatter correction has been applied using a linear subtraction method.

The attenuation correction has been performed using a transmission image segmentation

technique40. A Fourier Rebinning Algorithm (FORE) has been applied to the 3D acquired

data to produce 2D sinograms41. The size of each sinogram is 175 spatial locations × 128

angular samples. The FORE maximum ring difference (Dmax) has been set to 16 and the230

span has been set to 3. The energy window in all studies performed is 250-700 keV.

2. Phantom studies

The spatial resolution of the system has been measured using a 22Na point source (part

No:MMS05-022-10U, Eckert and Ziegler, Germany) with a nominal size of 1 mm. Measure-

ments have been acquired at two axial positions: (a) at the center of the axial FOV and235

(b) at 1/4 of the axial FOV away from the center of the axial FOV, at the following radial

distances from the center: 0 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm. The acquisition

time varied between 30 sec and 49 sec, collecting over 105 prompt counts in each position,

ensuring adequate statistics. The acquired 3D sinograms have been rebinned into 2D sino-

grams and reconstructed using SRT and 2D FBP (ramp filter, cutoff at Nyquist frequency).240

The image size is 175×175 pixels, resulting in a pixel size of 0.388 mm. Tangential, radial

and axial resolution measurements have been obtained by drawing line profiles though the

peak intensity pixel and applying a Gaussian fit in order to determine FWHM and FWTM.

No correction for source geometry have been applied.

The following two phantoms have been used: (a) a NEMA image quality phantom and245

(b) an in-house Derenzo phantom. A NEMA phantom (High Technology Advisors, S.L.,

Madrid, Spain), designed in accordance to the specifications of the NEMA NU 4-2008 quality

phantom42, has been used in order to determine the noise and contrast properties of each

algorithm. This phantom is separated into three main parts: a fillable cylindrical region 30

mm in diameter and 30 mm length, a solid region with 5 fillable rods with dimensions of250

1, 2, 3, 4, and 5 mm each, and a uniform region with two cold region chambers 8 mm in

diameter. The entire phantom has been filled with 15.8 MBq of 18F aqueous solution and

one of the 8-mm cold chambers has been filled with non-radioactive water, while the other

15



one remained with air. A 30-min PET scan has been acquired in two bed positions.

An in-house Derenzo phantom has been used in order to test the resolution limitations255

of each algorithm. The Derenzo phantom consists of 31 micro capillaries (72 mm length,

6.66 µl, Hirschmann Laborgeräte, Germany) arranged in six different sectors. The inner and

outer diameters of each capillary are 0.34 mm and 1 mm, respectively. The capillaries are

separated by 2, 3, 4, 5, 6 and 8 mm, respectively, and there is no material between them.

The phantom has been filled with 5.6 MBq of 18F aqueous solution and a 60 min PET scan260

has been performed.

The acquired and rebinned 2D sinograms have been reconstructed using the SRT algo-

rithm and the 2D FBP (ramp filter, cutoff at Nyquist frequency). The FBP reconstructions

have been obtained using the software provided with the ARGUS-CT PET/CT commercial

system, while the SRT reconstructions have been obtained via a Freemat version of the al-265

gorithm. The reconstruction matrix for both SRT and FBP is 175×175 resulting in a pixel

size of 0.388 mm.

3. Animal study

In order to investigate the performance of SRT in small animal images, a one-year-

old C57BL/6JOlaHsd male mouse (Harlan Interfauna Ibérica, S.L., Sant Feliu de Codines,270

Spain) has been imaged. The animal was kept under standard environmental conditions

and had free access to food and water before the study. A 15.3 MBq of 18F-FDG was

administrated to the conscious mouse via intraperitoneal (ip) injection. The animal was

left to rest for 60 min, and then it was anesthetized with isoflurane. Then, a 40-min PET

acquisition was performed moving the animal in three bed positions. The acquired 2D275

sinograms were then reconstructed using the same algorithms and parameters used in the

phantoms studies described above.

4. Human study

In order to investigate the performance of SRT in a clinical case, a whole-body scan of

a cancer patient was acquired under a standard protocol. 18F-FDG (350-400 MBq) was280

injected intravenously in a patient with probable pulmonary metastases. The patient was
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left to rest for 60 min and whole-body PET scan was performed in 6 bed positions, using the

GE Discovery ST PET/CT scanner. There was a 4-min acquisition in each bed position in

two-dimensional mode. The data were reconstructed using SRT and FBP with a ramp filter,

with corrections applied for random events, geometry, normalization, dead-time, scatter and285

attenuation.

E. Image quality metrics

For the simulated sinograms, the following quantities were calculated in order to deter-

mine the quality of the reconstructed images: (a) hot and cold region Contrast (Chot and

Ccold), (b) Coefficient of Variation (COV), (c) bias and (d) RCR. Similarly, for the real290

phantom images, COV and Contrast were employed. In order to determine mean activity

concentration and standard deviation (which are required for the calculation of COV), as

well as Contrast and RCR (see equations below), a region-of-interest (ROI) was first drawn

for the noiseless image, where the boundaries between image features were clearly resolved.

The same ROI was then applied for the images with noise. The mean activity concentration295

values within an ROI from all 20 noisy realizations were then averaged to obtain a final

value. All ROIs and profile calculations have been performed using ImageJ43 and Amide44,

both of which are open source software.

For the IQ phantom, the contrast for the four hot lesions, Chot, has been determined in

each noise level using the expression,

Chot =
(mhot/mbkgd)− 1

(ahot/abkgd)− 1
, (28)

where mhot and mbkgd are the average counts measured in the hot lesion ROI and in the

background ROI, respectively, averaged over all realizations (except for the case of noiseless

data). The ratio (ahot/abkgd) is the actual radioactivity concentration ratio between the hot

lesion and the background, which in our case is 4, for all hot lesions. The contrast for the

two larger cold lesions has been determined via the equation

Ccold = 1− mcold

mbkgd

, (29)

where mcold is the average counts measured in the cold lesion ROI averaged over all realiza-

tions.300
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The mean activities of the hot and cold regions have been determined by drawing ROIs of

variable diameters for each circular region. The diameter of each circular ROI is the same as

the diameter of the region being measured. In order to determine the mean activity mbkgd,

several larger ROIs have been drawn covering most of the background region.

The coefficient of variations has been calculated using the expression

COV =
σ

m
, (30)

where σ and m are the standard deviation and the mean of the measured activity in the305

background ROI, averaged over all realizations.

The bias in the IQ phantom is defined as the mean deviation, over all realizations, of the

mean pixel value within an ROI from the actual activity concentration, i.e.

bias =

{
1

R

R∑
r=1

Xr

}
−Xtrue, (31)

where R is the total number of realizations, Xtrue is the true activity concentration, and Xr

is the mean activity concentration within an ROI of realization r, with M number of pixels;

Xr is given by

Xr =
1

N

N∑
i=1

Xi. (32)

The calculated bias has been expressed as a percentage of the true activity concentration of

the lesion been measured, Xtrue.

In order to create contrast vs. noise and bias vs. noise plots after smoothing, 20 new noisy

realizations at a noise level higher than NL5 have been created (750 thousand events). Each310

image obtained after reconstruction with either SRT or FBP, was blurred with a Gaussian

filter of six different sizes (2×2, 3×3, 4×4, 5×5, 7×7 and 12×12 pixels). ROI measurements

were then performed for each realization and the average (over all realizations) contrast was

calculated for each lesion using either Eq. (28) or Eq. (29), depending on the type of lesion.

Furthermore, the bias was calculated using Eq. 31 and expressed as a percentage of the315

actual pixel value for the hot regions, and as number of counts for the cold regions.

In the Jaszczak phantom, the contrast in each noise level has been determined in the

cold regions with respect to the radioactive background using Eq. (29). The mean activity

mcold has been determined in four of the six sections by drawing ROIs as close as possible

to the actual size of each rod, in all rods composing each sections. The contrast for the320
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two smallest regions has not been determined since in this case due to the small size of

each rod, it is difficult to define a ROI. The mean activity of the radioactive background is

determined by drawing multiple smaller ROIs between the rods been measured, throughout

the radioactive region. The COV for the Jaszczak phantom is calculated using Eq. (30).

In order to determine the capability of each reconstruction algorithm to resolve the closely325

separated rods of the Jaszczak phantom, the noisy reconstructed images were first averaged

over all reconstructed realizations. Then, line profiles were drawn through the rods of each

section of the phantom, for each noise level. The line profile acquired from the reconstruction

image of each algorithm has been normalized to the maximum value of each profile.

In the Hoffman phantom, the contrast between GM and CSF, as well as the contrast

between WM and CSF, have been determined using Eq. (29), where mcold corresponds to

the mean value obtained from the CSF region and mbkgd corresponds to the mean value

obtained from either the WM or the GM region. The COV is determined from the WM

using Eq. (30). The RCR between GM and WM is determined from the following expression

RCR =
mGM

mWM

, (33)

where mGM and mWM are the average counts measured in ROIGM and ROIWM , averaged330

over all realizations. In order to determine the mean activities in these areas, multiple small

circular ROIs have been drawn throughout the image in each corresponding region and the

mean value has been calculated.

Furthermore, the bias in the SRT and FBP reconstructed Hoffman images has been

calculated for both the WM and GM using Eq. (31).335

For the real data collected from the NEMA NU 4-2008 image quality phantom, the COV

has been calculated from a slice of the uniform region. The mean activity and standard

deviation have been determined by drawing a 27-mm ROI (over 95% of the active region)

and the COV has been calculated using Eq. (30).

The contrast, Ccold between air and radioactive region, as well as between water and340

radioactive region, have been determined from a slice of the two cold chambers. The mean

activities in these regions have been obtained by drawing a 7.75-mm ROI (over 90% the phys-

ical diameter of the cylinders) over the air-filled and water-filled chambers, and a larger ROI

over the radioactive region. The contrast between the two cold regions and the radioactive

region have been calculated using Eq. (29).345
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TABLE I. Point-source spatial resolution measurements for simulated data.

At axial center at position (0 cm,0 cm)

Profile Parameters SRT FBP Improvement

Radial FWHM 4.88 mm 5.29 mm 7.75%

FWTM 8.89 mm 9.64 mm 7.78%

Tangential FWHM 4.88 mm 5.30 mm 7.92%

FWTM 8.89 mm 9.66 mm 7.97%

At axial center at position (10 cm,10 cm)

Profile Gaussian Fit Parameters SRT FBP Improvement

Radial FWHM 4.66 mm 4.84 mm 3.72%

FWTM 8.50 mm 8.82 mm 3.63%

Tangential FWHM 4.64 mm 4.80 mm 3.33%

FWTM 8.45 mm 8.75 mm 3.43%

The contrast for each section of the Derenzo phantom has been calculated using Eq.

(29). The mean activities in each section have been obtained by drawing circular ROIs of

a diameter close to the actual diameter of the lesion, in all lesions of each section of the

phantom. In order to determine the mean activity of the background, multiple ROIs have

been drawn between the hot lesions of each section. Furthermore, in order to determine the350

capability of each reconstruction algorithm to resolve the closest separated capillaries of the

Derenzo phantom, a line profile through a row of the 2-mm separated spots has been drawn.

The line profile acquired from the reconstruction image of each algorithm is normalized to

the maximum value of each profile.

III. RESULTS355

The reconstruction time for SRT depends on the size of the sinogram and the recon-

struction grid. By restricting reconstruction within the object boundaries via sinogram

thresholding, the reconstruction time decreases depending on the size of the object being

imaged. For the simulated Hoffman phantom (sinograms of size 221×210, and 221×221

reconstruction grid), the reconstruction time is about 2.1 sec per sinogram, executed on a360

PC with Intel R⃝ CoreTMi7-920 Processor. We note that no parallel programming or other ac-

celerating techniques have been employed. The corresponding reconstruction time for FBP

in STIR is about 0.3 sec.
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FIG. 1. Reconstructed images of the simulated IQ phantom at various noise levels (the noise level

increases moving from left to right): (A) No Noise, (B) Noise Level 2, (C) Noise Level 4 and (D)

Noise Level 5.

A. Simulation studies

Table I presents the spatial resolution properties (FWHM and FWTM), in the radial and365

tangential directions, for the SRT and FBP reconstructed point-source images, simulated at

two different radial locations. These results indicate an improvement in FWHM and FWTM

of almost 8% at the center of the scanner, and a smaller improvement, about 3.5% at the

position (10 cm,10 cm).

For the IQ simulated phantom, comparisons between SRT and FBP reconstructed images370

with no noise, as well as with noise (NL2, NL4 and NL5) are shown in Fig. 1. For economy

of presentation, images from NL1 and NL3 are not shown. The noisy images presented are

representative reconstructions of one realization at the specific noise level. Both SRT and

FBP can generate negative values in pixels where the value of the original phantom is very

low or zero. In all images presented, the all-black color corresponds to zero values. The375

value for the all-white color is chosen in order to enhance the contrast of the figures and

to emphasize some of the streak artifacts. Both reconstructions are displayed on the same

scale.

Although, the reconstructions from both methods appear similar, there exist two main380
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FIG. 2. Contrast and bias vs. COV for the two reconstruction algorithms obtained from the

reconstructed images of the simulated IQ Phantom. Note that the leftmost data point in each

curve corresponds to the noiseless case, while the rightmost data point corresponds to the NL5

case.

differences: From visual inspection it is clear that there exist differences in noise texture

between SRT and FBP reconstructions. Specifically, the reconstructions obtained from SRT

appear more noisy than those obtained from FBP at every noise level. Furthermore, the

SRT reconstructions are completely clear from streak artifacts outside the object, whereas

some small streak artifacts are present in FBP reconstructions.385

The contrast, Chot, for the two smallest hot spheres of the IQ phantom (15 mm, and

12 mm) as a function of COV, is presented in Fig. 2. The SRT algorithm exhibits higher

contrast in all three lesions independently of noise level. The improvement in contrast over

FBP increases as the size of the lesion decreases. Indeed, we observe no differences in Ccold

for the 38-mm and 32-mm cold spheres, but a small SRT improvement in Chot for the 25-mm390

lesion and larger improvement for the 19-mm lesion (graphs not shown).

The percent bias generated by the reconstruction algorithms, for the two smaller hot

lesions as a function of noise level, is also presented in Fig. 2. The bias is negative in

all cases. There are no significant differences in bias between SRT and FBP for the cold395

lesion and for the largest hot lesion (graphs not shown). The bias had small variations as

a function of COV for both SRT and FBP. FBP appears to give a higher bias in all cases

reaching about 9% for the 12-mm lesion. The percent bias for FBP increases as the lesion
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size decreases. The percent bias for SRT has small variations as a function of lesion size.

Similar plot has been obtained for the 19-mm hot lesion (graph not shown).400

Contrast vs. noise and bias vs. noise plots after smoothing are presented in Fig. 3 for

the 32-mm cold lesion as well as for the three smaller hot lesions. Similar plots have been

obtained for the remaining two lesions (graphs not shown). For the cold lesions, the curves

between SRT and FBP are similar, and both reconstruction methods yield over 88% contrast.

The bias for the cold region is very small for both algorithms (varies for 1 to 8 counts), and405

increases as the size of the Gaussian filter increases. For the hot lesions, there is a similar

behavior of contrast and bias for SRT and FBP after smoothing. However, there is a shift

of the SRT curve towards higher noise, yielding at the same time higher contrast and lower

bias values than FBP. For example, for the 12-mm hot lesion the contrast improves (without

smoothing) from 87% with FBP to 97% with SRT, and the bias from -10% with FBP to -2.5%410

with SRT, at the expense of noise.

For the Jaszczak simulated phantom, comparisons between SRT and FBP reconstructed

images with no noise, as well as with noise (NL2, NL4 and NL5) are shown in Fig. 4. The

noisy images presented are representative reconstructions of one realization at the specific415

noise level. Similarly to the IQ phantom, the SRT images are more noisy than the images

obtained from FBP. However, the SRT reconstruction provides images without any streak

artifacts outside the object, whereas small streak artifacts are present in the FBP recon-

structions, especially in NL5. Both SRT and FBP reconstructions are capable of resolving

visually the smallest rods (9.14-mm in diameter) in all noise levels.420

Fig. 5 presents contrast comparisons between SRT and FBP as a function of noise

level for the 15.76-mm and 13.50-mm rods of the Jaszczak phantom. The SRT algorithm

presents a small improvement (2-5%) over FBP in Ccold in all noise levels for the two rod

sizes displayed. Similar plot has been obtained for the 18.03-mm rod, however there is no425

difference in contrast for the largest (27.11-mm) rod (graphs not shown). The contrast for

the two smaller regions (11.22-mm and 9.14-mm) could not be determined.

Fig. 6 illustrates the line profiles obtained along the 9.14-mm rods of the Jaszczak

phantom with no noise, as well as with noise (NL2, NL4 and NL5). The improved contrast

of SRT is clearly illustrated. Similar plots have been obtained from the other sections of the430

phantom.

For the Hoffman simulated phantom, comparisons between SRT and FBP reconstructed
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FIG. 3. Contrast and bias vs. COV after Gaussian blurring for: A) 32-mm cold sphere, B)19-mm

hot sphere, C) 15-mm hot sphere and D) 12-mm hot sphere. The leftmost data point in each curve

corresponds to the case of no blurring, while the rightmost data point corresponds to the case

of blurring with a 12×12 pixels Gaussian window. Note that the bias for the cold-sphere case is

presented as number of counts.

images with no noise, as well as with noise (NL2, NL4 and NL5) are shown in Fig. 7. The

noisy images presented are representative reconstructions of one realization at the specific

noise level. All anatomical features of this phantom can clearly be identified for all selected435

noise levels by both algorithms. Small streak artifacts outside the object are present in

the FBP reconstructions, whereas the SRT reconstruction provides images with no such

artifacts.

Contrast plots between GM/CSF and WM/CSF as a function of noise level are presented

in Fig. 8(A) and Fig. 8(B). We observe a small improvement in contrast for the SRT440

algorithm especially for the case of the WM. RCR plots comparing the two reconstruction

algorithms as a function of noise level are presented in Fig. 8(C). The RCR calculations
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FIG. 4. Reconstructed images of the simulated Jaszczak phantom at various noise levels: (A) No

Noise, (B) Noise Level 2, (C) Noise Level 4 and (D) Noise Level 5.

FIG. 5. Contrast vs. COV for the two reconstruction algorithms for two sections of the simulated

Jaszczak phantom. Note that the leftmost data point in each line curve corresponds to the noiseless

case, while the rightmost data point corresponds to the NL5 case.

between GM and WM suggest that FBP slightly underestimates the actual RCR value

(dotted line), whereas the RCR calculated from SRT reconstructions is closer to the actual

value. The percent bias for the GM as a function of noise level is depicted in Fig. 8(D).445

There is a negative bias in both algorithms, similar to the case of the IQ phantom. The bias

is 4% for the FBP and about 2% for the SRT algorithm. The bias for the GM was under 0.8%

for both algorithms (graph not shown).
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FIG. 6. Line profiles obtained along the 9.14-mm rods of the Jaszczak phantom for four levels of

noise: (A) No Noise, (B) NL2, (C) NL4 and (D) NL5. The dashed lines correspond to normalized

profile values through the simulated phantom

B. Real data studies450

Table II summarizes the spatial resolution properties (FWHM and FWTM), in the radial,

tangential and axial directions, for the SRT and FBP reconstructed images of the 22Na point

source, at various axial and radial locations. The results indicate that there is no significant

difference between SRT and FBP in the axial direction. However, in the radial and tangential

directions there is a small but consistent improvement with SRT that reaches about 4% in455

one radial location.

Reconstructed images obtained via SRT and FBP (including SRT without sinogram

thresholding) of three slices of the NEMA NU 4-2008 image quality phantom, are presented

in Fig. 9. Small streak artifacts are present in both SRT and FBP reconstructions. These

artifacts are reduced in SRT when sinogram thresholding is applied.460
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FIG. 7. Reconstructed images of the simulated Hoffman phantom at various noise levels: (A) No

Noise, (B) NL2, (C) NL4 and (D) NL5.

COV and contrast calculations using the uniform slice and the cold chamber slice of the

NEMA phantom, are presented in Fig. 10 (A and B). The SRT reconstructed images exhibit

slightly higher COV values in comparison to FBP. The contrast values for both the water

and air chambers are similar for both algorithms.

Reconstructed images of the Derenzo phantom are shown in Fig. 9. All reconstructed465

circular sources are clearly visible with both methods. Fig. 10(C) illustrates the contrast for

the various sectors of the Derenzo phantom calculated from the SRT and FBP reconstructed

images. The contrast in the SRT reconstructed images is higher than FBP; the difference

between SRT and FBP becomes larger, as the center-to-center spacing between the lesions

of the Derenzo phantom becomes smaller. Fig. 10(D) illustrates the line profiles obtained470

along the 2-mm separated capillaries of the phantom. SRT resolves the 2-mm separated

holes slightly better that FBP.

Reconstructed images of four representative transaxial slices of the 18F-FDG mouse study,

are presented in Fig. 11. Each column of the image mosaic represents distinct anatomical

features: from left to right, (a) a slice through the abdomen (liver) and spine cord, (b) a475

slice through the thoracic cavity, (c) a slice though the thoracic cavity including the heart,

(d) a slice though the Hyoid bone in the upper cervical area.

Reconstructed images of a representative transaxial slice though the thoracic cavity of
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FIG. 8. Contrast, RCR and bias vs. COV comparisons between the two reconstruction algorithms

for the simulated Hoffman phantom. Contrast was determined for GM with respect to CSF (A)

and for WM with respect to CSF (B). RCR between GM and WM was also determined (C). The

dashed line indicates the actual RCR between GM and WM of the simulated Hoffman phantom

being imaged. The bias is presented as a percentage of the true activity concentration of the

lesion been measured (D). Note that the leftmost data point in each line curve corresponds to the

noiseless case, while the rightmost data point corresponds to the NL5 case.

the 18F-FDG whole-body PET study are presented in Fig. 12 using SRT (with and without480

sinogram thresholding) and FBP with a ramp filter. Furthermore, the same reconstructions

are also presented after applying a 4×4 pixel Gaussian post-reconstruction filter. The four

lesions present in the lung of the patient are clearly visible in both reconstructions. A small

improvement in contrast and resolution appears in the SRT reconstructions. However, the

noise level of SRT is slightly higher in comparison to FBP.485

IV. DISCUSSION

In this work, a new analytic image reconstruction technique, the SRT, has been evaluated

in comparison to FBP under PET imaging conditions using simulated and real data. The
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TABLE II. Point source resolution measurements for real data.

At axial center

0 mm 5 mm 10 mm 15 mm 20 mm 25 mm

FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM

Radial SRT 1.57 2.86 1.69 3.08 1.83 3.33 1.91 3.48 2.07 3.77 2.3 4.2

FBP 1.6 2.92 1.74 3.18 1.87 3.40 1.97 3.59 2.11 3.84 2.33 4.24%

Improvement 1.88% 2.05% 2.87% 3.14% 2.14% 2.06% 3.05% 3.06% 1.90% 1.82% 1.29% 0.94%

Tangential SRT 1.44 2.62 1.46 2.66 1.42 2.59 1.39 2.53 1.56 2.84 1.56 2.85

FBP 1.45 2.64 1.50 2.74 1.46 2.67 1.43 2.61 1.60 2.92 1.61 2.93

Improvement 0.69% 0.76% 2.67% 2.92% 2.74% 3.00% 2.80% 3.07% 2.50% 2.74% 3.11% 2.73%

Axial SRT 1.32 2.40 1.72 3.14 1.88 3.43 2.02 3.68 2.23 4.06 2.60 4.73

FBP 1.32 2.41 1.73 3.15 1.87 3.41 2.03 3.71 2.23 4.06 2.60 4.73

Improvement 0.00% 0.41% 0.58% 0.32% -0.53% -0.59% 0.49% 0.81% 0.00% 0.00% 0.00% 0.00%

At 1/4 axial FOV from center

0 mm 5 mm 10 mm 15 mm 20 mm 25 mm

FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM FWHM FWTM

Radial SRT 1.62 2.94 1.65 3.01 1.90 3.45 2.02 3.68 2.12 3.86 2.52 4.58

FBP 1.64 2.98 1.69 3.08 1.96 3.56 2.10 3.83 2.12 3.86 2.52 4.6

Improvement 1.22% 1.34% 2.37% 2.27% 3.06% 3.09% 3.81% 3.92% 0.00% 0.00% 0.00% 0.43%

Tangential SRT 1.47 2.67 1.38 2.51 1.43 2.60 1.41 2.57 1.63 2.97 1.63 2.97

FBP 1.47 2.68 1.43 2.60 1.47 2.68 1.46 2.65 1.67 3.05 1.68 3.05

Improvement 0.00% 0.37% 3.50% 3.46% 2.72% 2.99% 3.42% 3.02% 2.40% 2.62% 2.98% 2.62%

Axial SRT 1.28 2.34 1.63 2.98 1.57 2.87 1.67 3.04 1.77 3.22 1.93 3.51

FBP 1.29 2.34 1.64 2.99 1.58 2.87 1.67 3.05 1.78 3.25 1.93 3.51

Improvement 0.78% 0.00% 0.61% 0.33% 0.63% 0.00% 0.00% 0.33% 0.56% 0.92% 0.00% 0.00%

algorithm has been implemented in the STIR Open Source software library; by employing490

several symmetries, the reconstruction time has been reduced drastically in comparison to

an earlier version29. Further improvement in reconstruction time can be accomplished by a

sinogram thresholding option which restricts reconstruction within object boundaries. The

performance of the algorithm has been assessed by analyzing a variety of measures of merit

including resolution (via FWHM and FWTM), contrast for cold and hot regions, radioac-495

tivity concentration ratio between two regions and bias. Overall, regarding the simulation

29



FIG. 9. Reconstructions of three slices of the NEMA NU 4-2008 image quality phantom and a

slice of the Derenzo phantom, acquired by the ARGUS-CT small animal PET/CT system: (A)

SRT with no thresholding, (B) SRT with thresholding, (C) FBP with a ramp filter. Note that the

8-mm cold chamber on the left of the NEMA 2 slice is filled with non-radioactive water and the

one on the right with air.

studies, SRT provided images of higher resolution, higher contrast and lower bias than FBP.

Regarding the real studies, SRT provides a small increase in resolution and contrast espe-

cially for the closely spaced 2-mm lesions of the Derenzo phantom. The above improvements

are apparently the consequence of increasing slightly the noise in the reconstructed images.500

The contrast vs. noise and bias vs. noise plots after smoothing demonstrate similar behav-

ior between SRT and FBP. However, SRT by producing a noisier image without smoothing,

it provides a larger range of COV values to choose from (one could argue that by selecting a

cutoff frequency higher than the Nyquist frequency one could achieve higher COV for FBP

and therefore one could improve contrast and bias; however, at these higher frequencies the505

images suffer from aliasing and STIR, as well as other reconstruction packages, do not allow

this option).

Our reconstruction technique is different than FBP, or other analytic formulae for parallel
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FIG. 10. Results from analyzing real NEMA NU 4-2008 and Derenzo phantom images: (A) COV,

(B) Contrast for water-to-background and air-to-background, (C) Contrast for the different sections

of the Derenzo phantom and (D) Line profiles obtained along the 2-mm separated capillaries of the

Derenzo phantom. The dashed lines corresponds to normalized profile values through the actual

phantom.

projections that have appeared in the literature the last 15 years, including the direct analytic

inversion formulae of Clackdoyle et al.45, Clackdoyle and Noo46, and Defrise et al.47. In the510

case of FBP, images are obtained by backprojecting appropriately filtered projection data.

This approach involves the direct Fourier transform of the projection data and the inverse

Fourier transform of the filtered projection followed by the backprojection step. Another

important analytical technique is the two-step Hilbert transform method developed by Noo

et al.48. This method involves the backprojection of the derivative of the projection data515

and the recovery of the image using Hilbert transform techniques. The advantage of this

approach is the ability to obtain ROI reconstructions from truncated projections. In the

approach developed by Zeng49, the order of backprojection and differentiation of the two-step
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FIG. 11. Reconstructions of four representative slices of a mouse study acquired by the ARGUS-

CT small animal PET/CT system: (A) SRT with no thresholding, (B) SRT with thresholding, (C)

FBP with a ramp filter.

Hilbert transform is reversed.

In contrast to the above techniques, the SRT involves the backprojection of the derivative520

of the Hilbert transform of the projection data. The derivative of the Hilbert transform is

computed analytically by expanding the projection data in each interval in terms of ‘custom

made’ cubic splines.

A similar approach was employed by La Rivière and Pan (La Rivière and Pan 1998) in

which cubic spline functions were fitted to the projection data. However, both the final525

formulation and the numerical implementation of the above authors are substantially differ-

ent than ours (in particular, their inversion formula involves the numerically unstable term

ln
(

ξ′−ξi
ξ′−ξi+1

)
). In spite of these differences, the improvement of spatial resolution obtained

via SRT is in agreement with the results obtained by La Rivière and Pan (La Rivière and

Pan 1998) using SPECT data. Apparently, this improvement is a direct consequence of530
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FIG. 12. Reconstructions of a representative slice through the chest area of a whole-body PET

scan acquired by the GE Discovery ST PET/CT scanner: (A) SRT with no thresholding, (B)

SRT with thresholding, (C) FBP with a ramp filter, (D) SRT with no thresholding and Gaussian

smoothing, (E) SRT with thresholding and Gaussian smoothing, (F) FBP with a ramp filter and

Gaussian smoothing.

the way that these two approaches treat the projection data. Indeed, since the sinogram is

known on a finite grid, the Radon transform can not be inverted using FBP without the dis-

crete filtration and backprojection steps. This discrete approximation of the inverse Radon

transform used in FBP, is avoided in the splines technique where the sinogram is treated as

a continuous function. By fitting an analytic expression to the discretized projection data, a535

closed-form expression for the quantity that must be backprojected can be computed, thus

eliminating the need for interpolation before backprojection.

FBP suppresses high frequencies in the projection data and perhaps this results in lower

resolution images than these obtained with SRT. Indeed, since the high-frequency compo-

nents carry more noise, the SRT reconstructions appear more noisy than those of FBP. In540

summary, the improvement of the spatial resolution of SRT in comparison with FBP is re-

33



lated to the fact that SRT is formulated in the physical space, whereas FBP is formulated

in the Fourier space.

The SRT algorithm can also be applied to other imaging modalities such as CT and

SPECT. In this latter case, which involves a rotating camera, SRT has the capability of545

providing effective reconstructions for truncated sinograms. A detailed analysis of truncated

geometries and ROI reconstructions will be presented elsewhere.

It is important to note that SRT does not require a sinogram with evenly spaced angles

and detectors, it only requires a sinogram with known detector locations and projection

angles. Thus, SRT can accommodate complicated system geometries with variable detector550

spacing; details will be presented elsewhere.

OSEM is now in widespread use in clinical and preclinical systems. The comparison of

SRT with iterative algorithms is work in progress, and the relevant results will be presented in

the near future. Preliminary studies indicate that SRT has certain advantages, particularly

in cases where quantification of radioactivity is required.555

FBP is currently the only analytic reconstruction algorithm available through the STIR

library. It appears that SRT provides a good alternative to FBP, especially now that the

speed of SRT is comparable to that of FBP. Therefore, we intend to make the reconstruction

code for SRT part of the STIR open source library, which will allow many users to explore

particular advantages of SRT.560

V. CONCLUSIONS

In this work, we have presented the evaluation of SRT, a novel, analytic, 2D, image

reconstruction technique for parallel beam geometry. This algorithm has been evaluated

using simulated and real PET data, in comparison to FBP. Overall, the SRT provides

images of higher resolution, higher contrast and lower bias than FBP; apparently this is565

achieved by increasing slightly the noise in the reconstructed images. Unlike other analytic

reconstruction algorithms, the reconstruction time of SRT is comparable with that of FBP.

The implementation of SRT to simulated and real SPECT data will be presented elsewhere.

Taking into consideration that SRT improves resolution by increasing noise, it is natural

to speculate that SRT may also be useful for CT, where the data contain less noise. In570

future studies, an oriented imaging-task analysis will be performed and the usefulness of
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this algorithm under specific clinical tasks will be rigorously analyzed.
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